Theorem (Valiant 1981)

For general keys and deterministic algorithms;

Finding the max of \(n \) numbers using \(n \) processors needs \(\Omega(\log \log n) \) time.

A parallel comparison tree was used by Valiant to prove this theorem. A parallel comparison tree only accounts for the number of comparisons made and hence it is a model that is more powerful than the PRAMs. As a result, the same lower bound readily applies on any of the PRAM models as well.

Fact:

Finding the max of \(n \) integers in the range \([1, n^c]\) can be done in \(O(1) \) time using \(n \) Common CRCW PRAM processors, where \(c \) is any constant.

Fact:

We can find the max of \(n \) elements in \(O(\log \log n) \) time using \(\frac{n}{\log \log n} \) Common CRCW PRAM processors.

LEMMA:

We can find the max on \(n \) elements in \(\tilde{O}(1) \) time using \(n \) arbitrary CRCW PRAM processors.

Proof:

Input:

\[X = k_1, k_2, k_3, \ldots, k_n \]

Idea:

1) Pick a random sample \(S \) of size \(\sqrt{n} \). \(O(1) \) Time
2) Find the max \(M \) of this sample. \(O(1) \) Time
3) for \(1 \leq i \leq n \) in parallel do
 if \(k_i < M \) then delete \(k_i \);
 The number of surviving keys is \(\tilde{O}(\sqrt{n \log n}) = \tilde{O}(n^{0.51}) \)
4) Find and output the max of the surviving keys using the following fact.

Fact:
We can find the max of \(n \) elements in \(O(1) \) time using \(n \sqrt{n} \) processors.

Idea:

\[k_1, k_2, \ldots, k_{\sqrt{n}} \quad k_{\sqrt{n} + 1}, \ldots, k_{2\sqrt{n}} \quad \ldots \ldots \quad \ldots, \ldots, \ldots, k_n \]

\[M_1 \quad M_2 \quad M_{\sqrt{n}} \]

A problem:

We have to collect the surviving keys and write them in successive cells so that we can proceed with step 4.

We’ll place the surviving keys in a region of size \(n^{2/3} \) so that each cell in this region will have at most one surviving key.

A Round:

a) Each processor with a surviving key picks a random cell \(j \);
b) The processor reads from \(j \) and if \(j \) is occupied, it waits for the next round.
c) If the cell \(j \) is empty, the processor tries to write its key in \(j \);
d) The processor reads from \(j \);
e) If \(j \) has its key, the processor is done; otherwise, it waits for the next round;

Placement algorithm:

\[\text{REPEAT} \]

Each processor with a live key participates in a Round.
UNTIL all the keys are placed.

Analysis:

![Diagram](attachment:image.png)

of elements that will be placed = $O(n^{0.51})$

In any given round, the probability that a processor does not succeed is $\leq \frac{n^{0.51}}{n^{2/3}} = O(n^{-0.15})$

∴ Probability of failure in $c \propto$ successive rounds is $\leq (n^{-0.15} c \propto)$

R.H.S $\leq n^{-\infty}$ if $c \geq \frac{1}{0.15} = \frac{20}{3}$

Prefix Computation

Input:

$$k_1, k_2, k_3, \ldots, k_n \in \Sigma$$

Output:

$$K_1, K_1 \oplus K_2, K_1 \oplus K_2 \oplus K_3, \ldots \ldots \ldots, K_1 \oplus K_2 \ldots \ldots \oplus K_n$$

Where \oplus is any binary, associative, and unit time operation.