1. Searching in \(O(1) \) time (M. Ajtai, J. Komlôs & E. Szemerédi, 1985).

We continue our discussion on devising a data structure for a static input set such that searching for any element can be done in \(O(1) \) time. Two levels of hashing will be employed to store the input set.

Input: \(S = \{ k_1, k_2, ..., k_s \} \subseteq M \).

Let \(M = \{ 0, 1, ..., m-1 \} \) and \(N = \{ 0, 1, ..., n-1 \} \).

W.L.O.G., Let \(p = (m + 1) \) be a prime number. \(\mathbb{Z}_p = \{ 0, 1, ..., p-1 \} \).

For any \(1 \leq k \leq m \), let \(h_k(x) = kx \mod p \mod n \).

Let \(V \subseteq M \) be any set where \(|V| = v \).

Let \(B_i(k, n, V) \) be the set of elements of \(V \) that are hashed into \(i \) by \(h_k \), for \(i \in N \).

\(B_i(k, n, V) = \{ x \in V: h_k(x) = i, \; i = 0, 1, ..., n-1 \} \).

Let \(|B_i(k, n, V)| = b_i(k, n, V) \).

Lemma. \(\sum_{k=1}^{m} \sum_{i=0}^{n-1} \binom{b_i(k, n, V)}{2} \leq \frac{mn^2}{n} \) for all \(V \subseteq M \) and \(n > v \).

Corollary. \(\exists k, \; s.t. \; \sum_{i=0}^{n-1} \binom{b_i(k, n, V)}{2} < \frac{v^2}{n} \).

How do we store \(S \)?

There will be two levels of hashing. In the first level use: \(n = s, V = S \)

Let \(h_k \) be a hash function that satisfies the following equation (1). The existence of such a function is ensured by the above Corollary. Assume that \(\binom{a}{b} = 0 \) when \(a < b \).

\[
\sum_{i=0}^{s-1} \binom{b_i(k, s, S)}{2} < \frac{s^2}{s} = s
\] (1)
In the second level do the following:

- For the bucket \(i \) \((0 \leq i \leq s - 1)\)

 Use a hash function \(h_{ki} \) with “n” = \(b_i(k, s, S)^2 \). In this case the hashing will be perfect (for an appropriate choice of \(h_{ki} \)).

Space for the hash functions = \((s + 1)\).
Space for the first level = \(s \).
Space for the second level = \(\sum_{i=0}^{s-1} b_i(k, s, S)^2 \).

From equation (1)

\[\sum_{i=0}^{s-1} [(b_i(k, s, S))^2] < 2s + \sum_{i=0}^{s-1} (b_i(k, s, S)) = 3s. \]

\[\rightarrow \text{Total memory used} = O(s). \]

Note.

Searching time = \(O(1) \).

We only have to do two hash function evaluations.

How do we find good \(k \) values?

We have to find \((s+1)\) hash functions such that for each function the above Corollary holds. If the set that is hashed is \(V \) with \(|V| = v\), then we can try each value of \(k \) and this trivial algorithm takes \(O(mn) \) time. This can be done in \(O(mv \log v) \) time as well.
Fact.

For at least $\frac{1}{2}$ of the k-values $\sum_{i=0}^{n-1} \binom{\binom{k}{i} n V}{2} < \frac{2v^2}{n}$.

- If we pick a random k, then $\text{Prob. } \left[\sum_{i=0}^{n-1} \binom{\binom{k}{i} n V}{2} < \frac{2v^2}{n} \right] \geq \frac{1}{2}$.
- As a result, the time needed to find a good k is $\tilde{O}(n \log v)$.

Therefore, the time needed to find all the $(s+1)$ hash functions is $\tilde{O}(s + \sum_{i=0}^{s-1} b_i (k, s, S)^2 \log s) = \tilde{O}(s \log s)$.

The probabilistic method:

is used to show the existence of objects that possess a given set of properties.

We use two basic facts:

1. If X is a random variable with a mean μ then

 X takes on a value that is $\geq \mu$ and X takes on a value that is $\leq \mu$.

2. Let U be a set of objects and let P be a property.

 If $\text{Prob. } \left[\text{a random object of } U \text{ has property } P \right] > 0$ then

 it implies that U has at least one object with property P.

Example 1.

Let $G(V, E)$ be an undirected graph. Then

\exists a partition of V into V_1 and V_2, s.t. the number of edges from V_1 to V_2 is $\geq \frac{|E|}{2}$.

Proof.

For every node $u \in V$

Put it in V_1 with probability $= \frac{1}{2}$;

Put it in V_2 with probability $= \frac{1}{2}$;

For any edge $e \in E$

Probability that it goes from V_1 to $V_2 = \frac{1}{2}$.

\Rightarrow The expected number of edges from V_1 to V_2 is $\geq \frac{|E|}{2}$.

Using (1), \exists a partition for which the number of edges from V_1 to V_2 is $\geq \frac{|E|}{2}$.

Example 2.
Input: \(F = C_1 \land C_2 \land C_3 \land \ldots \land C_m \), which is a CNF Boolean formula on \(n \) variables.

Fact: There exists an assignment that satisfies \(\geq \frac{m}{2} \) clauses.

Proof.
Let \(C_i \) be any clause with \(k \) literals. Give a random assignment to the variables.

\[
\text{Prob.} \ [C_i \text{ is not satisfied}] = 2^{-k}.
\]

\[\Rightarrow \text{Prob.} \ [C_i \text{ is satisfied}] = 1 - 2^{-k} \geq \frac{1}{2}.\]

\[\Rightarrow \text{Expected number of satisfied clauses} = \frac{m}{2}.\]

Using (1), \(\exists \) an assignment that satisfies \(\geq \frac{m}{2} \) clauses.

Example 3.
Let \(C_n \) be a complete graph on \(n \) nodes.

Let \(k \) and \(t \) be integers.

\(R(k, t) \) is the minimum value of \(n \) s.t. if the edges of \(C_n \) are colored with red and blue, then for each such coloring \(\exists \) either a red clique of size \(k \) or a blue clique of size \(t \). \(R(k, t) \) is known as the Ramsey number.

Fact.
If \(\binom{n}{k} 2^{1 - \left(\frac{k}{2}\right)} < 1 \) then \(R(k, k) > n. \)

Proof.
Color the edges randomly.

Let \(X \) be a subset of nodes with \(|X| = k \).

\[\text{Prob.} \ [X \text{ is unicolored}] = 2^{1 - \left(\frac{k}{2}\right)}.\]

\[\Rightarrow \text{Prob.} \ [\exists \text{ a subset } X \text{ of size } k \text{ that is unicolored}] \leq \binom{n}{k} 2^{1 - \left(\frac{k}{2}\right)}.\]

If \(\binom{n}{k} 2^{1 - \left(\frac{k}{2}\right)} < 1 \) then

\[\text{Prob.} \ [\text{No subset } X \text{ of size } k \text{ is unicolored}] > 0.\]

\[\Rightarrow \exists \ \text{A coloring under which no subset } X \text{ of size } k \text{ is unicolored.}\]

\[\Rightarrow R(k, k) > n.\]
What is the maximum value of \(n \) for which \(\binom{n}{k} 2^{1-\left(\frac{k}{2}\right)} < 1 \)?

\[
\binom{a}{b} \approx (ae/b)^b
\]

\[
\left(\frac{ne}{k}\right)^k 2^{1-\left(\frac{k}{2}\right)} < 1
\]

\[
n^k = \frac{2^{k(k-1)z}}{z} \left(\frac{k}{e}\right)^k
\]

\[
n^k \approx \left[2^{\frac{(k-1)z}{2}} \frac{k}{e}\right]^k
\]

\[
n = 2^{\frac{(k-1)z}{2}} \frac{k}{e} \text{ is a lower bound on } R(k,k).
\]