Class Notes CSE462

Dr. Rajasekaran

19 Feb 2007
Contents

1 Static Search of Data Items in $O(1)$ time 5
1.1 Problem Statement: 5
1.2 Level-1 Hashing 6
1.3 Level-2 Hashing 6
1.4 Space Complexity 6

2 Probabilistic Approach 9
2.1 Introduction: .. 9
2.1.1 Idea-1 .. 9
2.1.2 Idea-2 .. 9
2.2 Examples: .. 9
2.2.1 Example-1 9
2.2.2 Example-2 10
2.2.3 Example-3 10
2.2.4 Example-4 11
Chapter 1

Static Search of Data Items in $O(1)$ time

1.1 Problem Statement:

INPUT: A sequence of $k_1, k_2, \cdots, k_n \in M, M = [0, 1, 2, \cdots, m-1]$
OUTPUT: Develop a static datastructure with Constant($O(1)$) search time for any key k_i.

SOLUTION: The Idea is based on two levels of hashing. Let $S \subseteq M$ be any input set with $|S| = s$. Let $p > m$ be a prime number (we can always find a prime number between $[m, 2m]$ according to number theory). For any $1 \leq k \leq (p-1)$ let $h_k(x) = (kx \mod p) \mod n$. $B_i(k, n, S)$ be set of elements of S that have a hash value i under h_k, $B_i(k, n, s) = \{x \in M : h_k(x) = i\}, i = 0, 1, 2, \cdots, n-1$

Lemma: The number of pairs $(x, y), x \in M, y \in M$ from S that collide under h_k

\[
\sum_{k=1}^{m-1} \sum_{i=0}^{n-1} C_{2}^{B_i(k,n,S)} \leq \frac{ms^2}{n}
\]

Corollary: For any $S \subseteq M$ there exists a k such that

\[
\sum_{i=0}^{n-1} C_{2}^{B_i(k,n,S)} \leq \frac{s^2}{n}
\]
1.2 Level-1 Hashing

In the first level of hashing we use \(n = s \). Then according to above corollary, \(\exists k \) such that the number of pairs \((x, y)\) from \(S \) that collide under \(h_k \) is

\[
\sum_{i=0}^{n-1} C_2^{B_i(k,n,S)} \leq \frac{s^2}{s} = s.
\]

From this we can conclude that the total space used for level-1 hashing is of the \(O(s) \).

1.3 Level-2 Hashing

Now we have \(B_i(k, n, S) \) elements (lets call them as \(S_i \) and \(|S_i| = s_i\)) in every bucket which need to be hashed. At this stage we proceed on the same lines as in the previous step (level-1 hashing). The only difference is that at level-1 we chose the number of buckets to be \(n = s \), now with in the bucket \(i \) of level-1 we create a hash with size \(n_i \), we choose \(n_i = |B_i(k, n, S)|^2 \), i.e square of the number of elements within the bucket. Lets call the buckets in level-2 as \(B'_i \). Now applying the same corollary to this level implies \(\exists k \) \((h'_k \text{ at this level call it } h'_k) \) such that the number of collisions is given by the following

\[
\sum_{i=0}^{n-1} C_2^{B'_i(k,n_i,S_i)} \leq \frac{s_i^2}{n_i}
\]

Since \(s_i = |B_i(k,n,S)| \) and \(n_i = |B_i(k,n,S)|^2 \) the above inequality (which is nothing but the total number of collisions) turns as

\[
\sum_{i=0}^{n-1} C_2^{B'_i(k,n_i,S_i)} \leq 1
\]

Thus we will not have any collisions within the bucket, Since we dont have collisions at second level the total time to find a key is \(O(1) \). In summary we need to preprocess the \(S \) to determine \(h_k \) at level-1 and \(h'_i, i = 0, 1, 2 \cdots n \) which satisfy the inequality in the corollary to make sure that it takes only \(O(1) \) time to find a key.

1.4 Space Complexity

At level-1 we know that we use space \(n = s \) or \(O(s) \) space. At level-2 we use a space of \(\sum_{i=0}^{n-1} n_i - 1 |B_i(k,n,S)|^2 \). But we know the following from level-1

\[
\sum_{i=0}^{n-1} C_2^{B_i(k,n,S)} \leq s \Rightarrow \sum_{i=0}^{n-1} (B_i(k,n,S))(B_i(k,n,S) - 1) \leq 2s
\]
1.4. SPACE COMPLEXITY

\[\Rightarrow \sum_{i=0}^{n-1} |B_i(k, n, S)|^2 \leq 2s + \sum_{i=0}^{n-1} |B_i(k, n, S)| \leq 3s \Rightarrow \sum_{i=0}^{n-1} |B_i(k, n, S)|^2 \leq 3s \]

From the above the space at level-2 is \(O(s) \), so the total space complexity is \(O(s) \)
CHAPTER 1. STATIC SEARCH OF DATA ITEMS IN O(1) TIME
Chapter 2

Probabilistic Approach

2.1 Introduction:

Probabilistic approach is used to prove the existence of objects with certain properties, it is based on the following two ideas.

2.1.1 Idea-1

If X is a random variable with mean μ then there is a value for X that is $\leq \mu$ and there is a value for X that is $\geq \mu$.

2.1.2 Idea-2

If U is a universe of objects and if the Prob[a random object from U has a property P] > 0, then \exists an object in U that has property P.

2.2 Examples:

The following examples use the above stated ideas to prove the existence of a certain property.

2.2.1 Example-1

Let $G(V, E)$ be a graph, $|V| = n$, $|E| = m$, then there is a partitioning of V into V_1, V_2 such that the number of edges from V_1 to $V_2 \geq \frac{m}{2}$

Proof: For every $u \in V$ flip a coin depending on the outcome place it in V_1 if you get a head, or place it in V_2 if you get a tail. For this partitioning
if e is any edge in E then
\Rightarrow Prob[e goes from V_1 to V_2] = $\frac{1}{2}$
\Rightarrow Expected number of edges (μ) = $\frac{m}{2}$, so clearly from Idea-1 \exists a partitioning such that the number of edges from V_1 to V_2 is $\geq \mu = \frac{m}{2}$

\textbf{2.2.2 Example-2}

Let f be a boolean formula in CNF (Conjunctive Normal Form).

$$F = F_1 \land F_2 \land F_3 \land \cdots \land F_m$$

Claim is there is an assignment of m classes to n variables that will satisfy at least $\frac{m}{2}$ classes.

Proof: Give a Random assignment to the variables. Let F_i be a class with k literals in it.
\Rightarrow Prob[F_i is not satisfied] = $\frac{1}{2^k} \leq \frac{1}{2}$
\Rightarrow Prob[F_i is satisfied] $\geq \frac{1}{2}$
\Rightarrow Expected Number of classes (μ) is $\geq \frac{m}{2}$
From Idea-1 \exists an assignment that satisfies in $\geq \frac{m}{2}$ classes

\textbf{2.2.3 Example-3}

Let C_n be a complete graph on n vertices, then the smallest n' such that any coloring of the edges will result in C_k that is red or C_t that is black is called the Ramsey Number $R(k, t)$.

Our problem is to derive the lower bound of the Ramsey Number.

Proof: Color the edges of C_n Randomly with red or black with equal probability.

\Rightarrow Prob[that a subset is unicolored] = $2 \times 2^{1-C_k^k}$
\Rightarrow Prob[\exists a subset of k nodes that have unicolor] $\leq C_k^n \times 2^{1-C_k^k}$
\Rightarrow if $C_k^n \times 2^{1-C_k^k} \leq 1$ then
\Rightarrow Prob[that there is no unicolor subset of size k] > 0
Now we use Idea-2 and it follows that \exists a coloring for which C_n does not have a unicolored C_k this proves the lemma $R(k, k) > n$.

$$\frac{n \times (n - 1)}{2} < 2^{C_k^k - 1}$$

Using stirlings approximation the following fact follows

$$C_k^a \leq \left(\frac{a \times e}{b}\right)^b \Rightarrow \left(\frac{ne}{k}\right)^k \times 2^{-\frac{k(k-1)}{2}} < 1$$
2.2. EXAMPLES:

\[
\Rightarrow \left(\frac{ne}{k} \right) < 2^{k-1} \Rightarrow R(k, k) = n \geq \frac{k \cdot 2^{k-1}}{e \cdot \sqrt{(2)}}
\]

2.2.4 Example-4

An \((n, \alpha, d, c)\) OR-CONCENTRATOR is a bipartite graph, \(G(L, R, E)\) where \(|L| = |R| = n\) and the degree of each node is \(d\). For every subset \(S\) of \(L\), with \(|S| \leq \alpha n\) the number of neighbours of \(S\) in \(R\) is \(\geq C|S|\), \(C > 1\), \(\alpha, c, d\) are constants.

Lemma: 1 \(\exists\ an\ (n, \frac{1}{3}, 18, 2)\ OR-CONCENTRATOR\ \forall\ n \geq n_0\ where\ n_0\ is\ some\ constant.\)

PROOF: To be continued in next class