Lemma:
If \(H \) is universal, then for any \(x \in M \) and \(S \subseteq M \), for a random \(h \in H \), \(E[\delta(x, S, h)] \) is \(\leq \frac{|S|}{n} \).

Proof:
\[
E[\delta(x, S, h)] = \frac{1}{|H|} \sum_{h \in H} \delta(x, S, h) \\
= \frac{1}{|H|} \sum_{h \in H} \sum_{y \in S} \delta(x, y, h) \\
= \frac{1}{|H|} \sum_{y \in S} \sum_{h \in H} \delta(x, y, h) \\
\leq \frac{1}{|H|} \sum_{y \in S} \frac{|H|}{n} = \sum_{y \in S} \left(\frac{1}{n} \right) = \frac{|S|}{n}
\]

Theorem:
If a dictionary is implemented using a 2-universal class of hash functions, then the expected time needed to perform \(r \) arbitrary operations is \(\Theta\left(H \frac{s}{n}\right) \) where \(s \) is the total number of inserts.

Construction of a two universal class:
Let \(p \) be a prime number greater than \(m \). Let \(g(x) = x \mod n \) for any \(x \in M \). Let \(F_{a,b}(x) = (ax+b) \mod p \) where \(a \neq 0 \), \(a, b \in \mathbb{Z}_p \). Let \(h_{a,b}(x) = g(F_{a,b}(x)) = ((ax+b) \mod p) \mod n \). Then \(H = \{ h_{a,b}: a \neq 0, a, b \in \mathbb{Z}_p \} \).

Lemma:
For any \(x, y \in M \), \(\delta(Z_p, Z_p, g), (x \neq y) \)

Proof:
This lemma says that \(\delta(x, y, H) \) is equal to the number of pairs \((r, s) \in Z_p \times Z_p \) (with \(r \neq s \)) s.t. \(r \equiv s \mod n \).
For a given a, b: \(ax \mod p \neq ay \mod p \). Consider \(r, s \in \mathbb{Z}_p \)
if \(ax \equiv r \pmod{p} \) and \(ay \equiv s \pmod{p} \), then we can solve these to get a, b.

Lemma:
\(H \) is 2-universal

Proof:
For any \(Z \in \mathbb{N} \) let \(A_z = \{ x \in \mathbb{Z}_p : g(x) = Z \} \)
Note that \(|A_z| \leq \left\lfloor \frac{p}{n} \right\rfloor \)
\(\delta(x, y, H) = \delta(Z_p, Z_p, g) \)
\[= p \left(\left\lfloor \frac{p}{n} \right\rfloor - 1 \right) \approx \frac{p(p-1)}{n} \]
Since \(|H| = p(p-1) \), \(\delta(x, y, H) \leq \left\lfloor \frac{|H|}{n} \right\rfloor \)
Note: any \(h \in H \) can be described with \(O(\log m) \) bits.

Fact:
For any integer \(m \), there exists a prime number in the range \([m, 2m]\)
Note: we can also design k-universal class of hash functions in a similar way.

Searching in O(1) time:
Input: \(k_1, k_2, \ldots, k_n \in M = \{0, 1, 2, \ldots, m-1\} \)
Goal: develop a static data structure where a search takes \(O(1) \) time in the worst case.

Idea: use two levels of hashing
Let \(p=(m+1) \) be a prime without loss of generality.
Let \(N = \{0, 1, 2, \ldots, n-1\} \).
Let \(S \subseteq M \) be any input set with \(|S|=s \)
For any \(1 \leq k \leq (p-1) \) let \(h_k(x) = (kx \mod p) \mod n \)

Let \(B_i(k,n,s) \) be the set of elements of \(S \) that have a hash value \(i \) under \(h_k \)
\(B_i(k,n,s) = \{ x \in S : h_k(x) = i \} \), \(i = \{0, 1, 2, \ldots, n-1\} \)
Lemma:
\[
\sum_{k=1}^{p-1} \sum_{i=0}^{n-1} \binom{Bi(k,n,s)}{2} \leq \frac{ms^2}{n}
\]

The number of \(\binom{Bi(k,n,s)}{2} \) is nothing but pairs \{x,y\} from S s.t. they collide under \(h_k \) and \(h_k(x) = i \)
\[
\sum_{i=0}^{n-1} \binom{Bi(k,n,s)}{2}
\]
is nothing but the number of pairs \{x,y\} from S that collide under \(h_k \)
\[
\sum_{k=1}^{p-1} \sum_{i=0}^{n-1} \binom{Bi(k,n,s)}{2}
\]
is nothing but the number of tuples \((k,\{x,y\}) \) s.t. \(x \) and \(y \) collide under \(h_k \).

\(x \) and \(y \) collide under \(h_k \) if:
\[
K(x-y) \mod p \equiv 0 \mod n
\]

\(K(x-y) \mod p \in \{0, \pm n, \pm 2n, \ldots, \pm \left\lfloor \frac{p-1}{n} \right\rfloor n \} \)

Consider the equation \(k(x-y) \mod p = jn \) for a given \(j \), the above equation can be solved to get a unique value for \(k \).

For a given \(x \) and \(y \) there are \(\frac{2(p-1)}{n} \) values for \(k \) s.t. \(x \) and \(y \) collide under \(h_k \)

There are \(\binom{s}{2} \) values for the pair \((x,y) \)
\[
\sum_{k=1}^{p-1} \sum_{i=0}^{n-1} \binom{Bi(k,n,s)}{2} \leq \frac{2(p-1)}{n} \cdot \frac{s^2}{2} \approx \frac{ms^2}{n}
\]

Corollary:
For any \(S \subseteq M \), \(\exists k \), s.t. \(\sum_{i=0}^{n-1} \binom{Bi(k,n,s)}{2} \leq \frac{s^2}{n} \).