1 Frazer and Mc Kellar’s Randomized Sort

Let the input sequence be $X = k_1, k_2, k_3, \ldots k_n$. There are five steps in the algorithm:

1. Pick a random sample S of s elements from X;
2. Sort the sample. Let the sorted sample be $\ell_1, \ell_2, \ell_3, \ldots \ell_s$;
3. Partition the input into $(s+1)$ parts. $X_1 = \{q \in X : q \leq \ell_1\}; X_i = \{q \in X : \ell_{i-1} < q \leq \ell_i\}$, for $2 \leq i \leq s$; and $X_{s+1} = \{q \in X : q > \ell_s\}$;
4. for $i := 1$ to $(s + 1)$ do sort(X_i);
5. Output sorted(X_1), sorted(X_2), ..., sorted(X_{s+1}).

Lemma 1.1 If we pick a sample S of s elements, sort the sample and partition X using the sample keys as splitters, then the size of each part is $\tilde{O}\left(\frac{n}{s}\log n\right)$.

Proof: Consider the elements of X in sorted order. Let the group of the first q elements be G_1; Let the group of the next q elements be G_2; and so on.

If we can show that each of these groups (G_1, G_2, \ldots) has at least one sample key in it with high probability, it will mean that the size of each X_i is no more than $2q$ with high probability.

Let us figure out the (smallest) value of q for which each group (G_j) will have at least one sample key with high probability.

Probability that a specific element of G_1 is in the sample = $\frac{s}{n}$
Probability that a specific element of G_1 is not in the sample = $(1 - \frac{s}{n})$.

1
Thus, probability that no element of G_1 is in the sample = $(1 - \frac{s}{n})^q$.

Since there are $\frac{n}{q}$ groups, $\text{Prob.} [\exists \text{ a group with the no representatives in the sample}] \leq \frac{n}{q} (1 - \frac{s}{n})^q$. We have used the following:

Fact:

$$\text{Prob}[A \cup B] \leq \text{Prob}(A) + \text{Prob}(B)$$

Fact:

For any $0 < x < 1$, $(1 - x)^{\frac{1}{x}} \leq \frac{1}{e}$

Using the above fact, $\text{Prob.} [\exists \text{ a group with the no representatives in the sample}] \leq n \left(1 - \frac{s}{n}\right)^{\frac{n}{q} \cdot \frac{s}{n}} \leq n e^{-\frac{qs}{n}}$.

We want the above probability to be $\leq n^{-\alpha}$.

Equating the two we get, $n e^{-\frac{qs}{n}} = n^{-\alpha} \Rightarrow e^{-\frac{qs}{n}} = n^{-(\alpha+1)} \Rightarrow \frac{qs}{n} = -(\alpha + 1) \log_e n \Rightarrow q = \frac{n}{s} (\alpha + 1) \log_e n$.

1.1 Analysis of the Run Time

1. Step 1 takes s time.

2. Step 2 takes $O(s \log s)$ time.

3. Step 3 can be done using a binary search for each input key. In particular, if k is any input key, we perform a binary search for k in the sorted sample and figure out the part that k belongs to. Total time taken is $n \log s$.

4. Step 4: Fix the value of s to be $\frac{n}{\log^5 n}$. For this choice of s, the size of each X_i is $\tilde{O}(\log^5 n)$. Sort each X_i using heapsort, for example. The total time needed to sort all the X_i’s is $O(\sum_{i=1}^{s+1} |X_i| \log |X_i|) = \max_{i=1}^{s+1} \log(|X_i|) O(\sum_{i=1}^{s+1} |X_i|) = 5 \log \log n \ O(n) = O(n \log \log n)$.

Therefore the total number of comparisons made by the algorithm equals $n \log s + \tilde{O}(n \log \log n) = n \log n + \tilde{O}(n \log \log n)$.

2
Fact

Any comparison sorting algorithm needs \(\log(n!)\) comparisons in the worst case.

Using Stirling’s approximation, \(\log(n!) \approx \log\left(\left(\frac{n}{e}\right)^n\right) = n \log n - n \log e\).

Thus the number of comparisons made by Frazer and McKellar’s algorithm is very close to the information theoretical lower bound.

2 Selection Problem

Inputs for the selection problem are a sequence \(X = k_1, k_2, \ldots, k_n\) and an integer \(i\) \((1 \leq i \leq n)\). The problem is to identify the \(i\)th smallest element of \(X\).

3 Floyd and Rivest’s Algorithm

1. Pick a random sample \(S\) of \(s\) elements from \(X\). Possible values for \(s\) are \(n^{\frac{2}{3}}, n^{\frac{3}{4}}, \ldots\), etc.

 Let \(K\) be the element to be selected.

 The number of elements \(\leq K\) in \(X = i\);

 The expected number of elements \(\leq K\) in \(S = i(n^{\frac{a}{n}})\).

 Definition: \(\text{Rank}(K, X) = |\{q \in X : q \leq K\}|\).

2. Pick two elements \(\ell_1\) and \(\ell_2\) from \(S\), whose ranks in \(S\) are \(i n^{\frac{a}{n}} - \delta\) and \(i n^{\frac{a}{n}} + \delta\), respectively, for some appropriate value \(\delta\).

 The elements \(\ell_1\) and \(\ell_2\) are such that they will bracket \(K\) (the element to be selected) and \(|\{q \in X : \ell_1 \leq q \leq \ell_2\}|\) will be ”small” with high probability.

 If \(\ell_1\) and \(\ell_2\) do not bracket \(K\) or if \(|\{q \in X : \ell_1 \leq q \leq \ell_2\}|\) is not ”small” we will start the algorithm all over again. However the probability of this happening is very low.
3.1 Analysis:

Pick \(\delta = c\alpha \sqrt{s \log n} \). The following Lemma will be used in the analysis.

Lemma 3.1 (Rajasekaran and Reif 1987) Let \(q \) be an element of \(S \) whose rank in \(S \) is \(j \). If \(r_j \) is the rank of \(q \) in \(X \), then,

\[
\text{Prob} \left(\left| r_j - j \frac{n}{s} \right| > \sqrt{3\alpha \frac{n}{\sqrt{s} \sqrt{\log n}}} \right) \leq n^{-\alpha}.
\]