Random Walks on Graphs

- Input: \(G(V,E) \)

- Repeat

 Pick a random neighbor and go

Questions

- What’s the expected time before each node is seen at least once?
- If we start from \(u \), what’s the expected time to see \(v \) for the first time?

Example 1

- Consider a completely connected graph \(C_n \), If we start from \(u \), the probability that the next node is \(v = \frac{1}{n-1} \).
- Expected time to see \(v \) starting from \(u = (n-1) \).
- Probability of not visiting node \(i \) in the fist \(k \) walks \(\leq \left(1 - \frac{1}{n-1} \right)^k \approx \left(1 - \frac{1}{n} \right)^k \).
- Prob. \(\exists \) an \(i \) that is not seen in the first \(k \) steps] is \(\leq n \left(1 - \frac{1}{n} \right)^k \leq n \exp \left(-\frac{k}{n} \right) \).
- \(n \exp \left(-\frac{k}{n} \right) = n^{-\alpha} \Rightarrow -\frac{k}{n} = -\alpha + 1 \log n \Rightarrow k = (\alpha + 1)n \log n \).

Example 2 (2-SAT)

- Let \(x_1, x_2, \ldots, x_n \) be one satisfying assignment to the given formula.
- Let these values be called correct values.
- Start from a random assignment
Repeat

If the given formula F is satisfied
report & quit
else

Pick a clause that is not satisfied
Pick a random literal in the clause and change its value

Forever

The number of the correct values changes by ± 1
The expected time to visit node n is \(O(n^2) \)

A Markov chain (MC)

- A discrete time stochastic process with a set S of states & a probability transition matrix \(P \).
- \(P_{ij} = \) Probability of visiting \(j \) from \(i \).
- Let \(x_t \) be the state of the MC at step \(t \) where \(t = 0,1, \ldots \).

\[\text{Prob.} \left[x_t = i \mid x_{t-1} = j, x_{t-2} = q_{t-2}, \ldots, x_1 = q_1, x_0 = q_0 \right] = \text{Prob.} \left[x_t = i \mid x_{t-1} = j \right] = P_{ij}. \]

\(P_{ij}^{(t)} = \) \(t \)-step transition probability.

- Let \(r_{ij}^{(t)} \) be the probability of visiting \(j \) at step \(t \) for the first time starting from \(i \) at time = 0.

\[r_{ij}^{(t)} = \text{Prob.} \left[x_t = j, x_s \neq j, 1 \leq s \leq t-1 \mid x_0 = 0 \right]. \]

Probability of ever visiting \(j \) starting from node \(i \) in step 0, \(f_{ij} = \sum_{t>0} r_{ij}^{(t)} \).

Let \(h_{ij} \) be the expected time to see \(j \) starting from node \(i \) at step 0, \(h_{ij} = \sum_{t=0}^{\infty} t \cdot r_{ij}^{(t)} \).

Note

- if \(f_{ij} < 1 \) then \(h_{ij} = \infty \).
- if \(f_{ij} < 1 \) then we call the node \(i \) as a TRANSIENT (means that most probably we won’t visit this node again).
- if \(f_{ij} = 1 \) then we say the node is PERSISTENT.
- if \(f_{ij} = 1 \) and \(h_{ij} = \infty \) then the node \(i \) is NULL-PERSISTENT.
- If \(f_{ij} = 1 \) and \(h_{ij} \neq \infty \) then the node \(i \) is NON-NULL-PERSISTENT.
- We can use a graph \(G \) to model a Markov Chain, each node corresponds to a state, an edge corresponds to a transition.
- A strong component of \(G \) is a maximal subgraph \(C \) of \(G \) such that for every pair \(a, b \in C \).
- There are directed paths from \(a \) to \(b \) and from \(b \) to \(a \).
- A strong component \(C \) of \(G \) is a final strong component, if \(C \) has no outgoing edges.
- A Markov chain is irreducible if it consists of a single strong component.
- For any two nodes \(a, b \) in a strong component there is a non-zero probability of visiting node \(b \) in a finite number of steps starting from node \(a \), this probability is \(1 \) if the strong component is final.

Fact 1
- In a finite irreducible Markov chain, all the states are NON-NULL PERSISTENT.
- The state probability vector at time step \(t = q^{(t)} = (q_1^{(t)}, q_2^{(t)}, \ldots, q_n^{(t)}) \) where \(q_i^{(t)} = \text{prob. } [x_t = j] \ 1 \leq i \leq n \).

Fact 2
- \(q^{(t)} = q^{(t-1)} \cdot p = q^{(0)} \cdot p^t \).
- \(\pi \) is a stationary probability distribution if \(\pi = \pi \cdot P \).
- \(\pi \) corresponds to the steady state.
- The periodicity of state \(k \) is the largest \(T \) such that \(q_k^{(t)} > 0 \Rightarrow t \in \{a + iT : i \geq 0\} \).
- A state is periodic if its periodicity is \(> 1 \), otherwise it is called aperiodic and NON-NULL PERSISTENT.
- A Markov Chain is Aperiodic if all the states are aperiodic.
- A Markov Chain is ERGODIC if all the states are ERGODIC.
Theorem

In a finite aperiodic and irreducible Markov Chain the following hold:

- All the states are ERGODIC
- There exist a stationary probability distribution π such that $\pi_i > 0$ for every $1 \leq i \leq n$.
- $f_{ij} = 1$ and $h_{ij} = 1/\pi_i$ for $1 \leq i \leq n$.
- if $N(i,t)$ is the number of steps in which the states of the Markov Chain is i in the first t steps, then $\lim (N(i,t)/t) = \pi_i$ (as t goes to infinity).

Note

- If we have a bipartite graph corresponding to a Markov Chain, then the states will be periodic.
- Let G be any connected non Bipartite Graph we can construct a Markov Chain out of as follows:
 - each node corresponds to a state $P_{ij} = 1/d_i$ (where d_i is the degree of node i)