Peer-Reviewed Technical Communication

MIMO-OFDM for High-Rate Underwater Acoustic Communications

Baosheng Li, Student Member, IEEE, Jie Huang, Member, IEEE, Keenan Ball, Member, IEEE, Milica Stojanovic, Senior Member, IEEE, Lee Freitag, Member, IEEE, and Peter Willett, Fellow, IEEE

Abstract—Multiple-input–multiple-output (MIMO) techniques have been actively pursued recently in underwater acoustic communications to increase the data rate over the bandwidth-limited channels. In this communication, we present a MIMO system design, where spatial multiplexing is applied with orthogonal-frequency-division-multiplexing (OFDM) signals. The proposed receiver works on a block-by-block basis, where null subcarriers are used for Doppler compensation, pilot subcarriers are used for channel estimation, and a MIMO detector consisting of a hybrid use of successive interference cancellation and soft minimum mean square error (MMSE) equalization is coupled with low-density parity-check (LDPC) channel decoding for iterative detection on each subcarrier. The proposed design has been tested using data recorded from three different experiments. A spectral efficiency of 3.5 kb/s/Hz was approached in one experiment, while a data rate of 125.7 kb/s over a bandwidth of 62.5 kHz was achieved in another. These results suggest that MIMO-OFDM is an appealing solution for high-data-rate transmissions over underwater acoustic channels.

Index Terms—Iterative equalization, multiple-input–multiple-output (MIMO), orthogonal-frequency-division-multiplexing (OFDM), underwater acoustic communication.

Manuscript received October 15, 2008; revised March 22, 2009; accepted July 31, 2009. First published October 20, 2009; current version published October 31, 2009. The work of B. Li and S. Zhou was supported by the U.S. Office of Naval Research (ONR) Young Investigator Program (YIP) under Grant N00014-07-1-0805 and by the National Science Foundation (NSF) under Grants ECCS-0725562 and CNS-0721834. The work of J. Huang and P. Willett was supported by the ONR under Grant N00014-07-1-0429. The work of K. Ball and L. Freitag was supported by the ONR under Grant N00014-07-1-0229. The work of M. Stojanovic was supported by the ONR under Grants N00014-07-1-0202 and N00014-07-1-0738. Parts of this work have been presented at the MTS/IEEE OCEANS Conference, Vancouver, BC, Canada, October 2007 and the MTS/IEEE OCEANS Conference, Quebec City, QC, Canada, September 2008.

Associate Editor: H.-C. Song

I. INTRODUCTION

TO ENHANCE the transmission rate over communication links, either the bandwidth, or the spectral efficiency in the unit of bits per second per Hertz (bs/Hz), or both, need to be increased. Multiple-input–multiple-output (MIMO) techniques can drastically increase the spectral efficiency via parallel transmissions over multiple transmitters [3], [4], hence are attractive to underwater acoustic communications which are inherently bandwidth limited.

Recently, several different approaches have been investigated for MIMO underwater acoustic communications, including those for single-carrier transmissions [5]–[11] and those for multicarrier transmissions in the form of orthogonal frequency-division multiplexing (OFDM) [1], [2], [12], [13]. Specifically, adaptive multichannel decision-feedback equalization (DFE) has been used in [5] and [6] while a time-reversal preprocessing followed by a single-channel equalizer has been used in [7] and [8]. In [5]–[8], parameter adaptation is performed on a symbol-by-symbol basis. Adaptive block equalization techniques have been proposed in the time domain [9] and in the frequency domain [10], where parameter adaptation is carried over successive blocks. Using basis expansion models (BEMs) to parameterize underwater acoustic channels, block-differential space–time coding has been investigated in [11]. For multicarrier systems, a nonadaptive block-by-block design was presented in [1] and [2], which is built upon the receiver developed for single-transmitter OFDM in [14], while a block-adaptive approach was developed in [12], which is built upon the single-transmitter OFDM system in [15] and [16]. In [13], experimental results were presented for both coherent and differential designs in an OFDM system with two transmitters.

The objective of this communication is to present a MIMO-OFDM system design [1], [2] and report on the performance results with data recorded from various experiments. The proposed MIMO-OFDM design consists of the following key components: 1) null subcarriers are inserted at the transmitter to facilitate the compensation of Doppler shifts at the receiver; 2) pilot tones are used for MIMO channel estimation, and 3) an iterative receiver structure is adopted that couples MIMO detection with channel decoding. The MIMO detector applied on each OFDM subcarrier consists of a hybrid successive interference canceller and minimum mean square error (MMSE) equalizer with a priori information [17], while the codes used are the...
nonbinary low-density parity-check (LDPC) codes from [18]. Note that an iterative receiver has been investigated in [19] for an underwater OFDM system with one transmitter, where carrier synchronization, channel estimation, and channel decoding are coupled. Our receiver does not include carrier synchronization and channel estimation in the loop. It rather focuses on the iterative processing between the MIMO detection and channel decoding.

The proposed design has been tested using data recorded from three different experiments: 1) the Autonomous Underwater Vehicle (AUV) Fest, Panama City, FL, June 2007; 2) the Rescheduled Acoustic Communications Experiment (RACE), Narragansett Bay, RI, March 2008, and 3) the Very High Frequency (VHF) Experiment, Buzzards Bay, MA, April 2008. For convenience, we will term these experiments as AUV07, RACE08, and VHF08 hereafter. With quaternary phase-shift keying (QPSK) modulation, rate 1/2 coding, and a 12-kHz bandwidth, the achieved data rate in AUV07 was 12.18 kb/s. For the RACE08 experiment, we report MIMO-OFDM performance results of QPSK/8-QAM/16-QAM/64-QAM with two transmitters, QPSK/8-QAM/16-QAM with three transmitters, and QPSK/8-QAM with four transmitters where a bandwidth of 4.9 kHz is used. A spectral efficiency of 3.5 b/s/Hz was approached with various configurations. In the VHF08 experiment, a data rate of 125.7 kb/s was achieved with two transmitters, 16-QAM modulation, rate 1/2 coding, and a bandwidth of 62.5 kHz. These results suggest that MIMO-OFDM is an appealing solution for very high-data-rate transmissions over underwater acoustic channels.

The rest of this communication is organized as follows. We describe the transmitter design in Section II and present the receiver algorithms in Section III. Performance results for different experiments are summarized in Sections IV–VI. Conclusions are drawn in Section VII.

Notation

Bold upper and lower letters denote matrices and column vectors, respectively; $(\cdot)^T$, $(\cdot)^*$, and $(\cdot)^H$ denote transpose, conjugate, and Hermitian transpose, respectively; and \mathbf{I}_N is the $N \times N$ identity matrix.

II. TRANSMITTER DESIGN

We consider MIMO-OFDM transmission with spatial multiplexing on N_t transmitters. The basic signalling format is zero-padded (ZP) OFDM [14]. Specifically, let B denote the bandwidth and K the number of subcarriers. The subcarrier spacing is $\Delta f = B/K$ and the OFDM block duration is $T = 1/\Delta f = K/B$. Each OFDM block is followed by a guard time of duration T_g to avoid interblock interference. Out of the total K subcarriers, K_n subcarriers are null subcarriers where no information will be transmitted, K_p subcarriers are pilot subcarriers carrying known symbols, and the rest $K_d = K - K_n - K_p$ subcarriers are data subcarriers.

The signals are generated as follows. Let r_c denote the code rate of channel code and M the size of the constellation, which could be 4, 8, 16, or 64 in our experiments. For each OFDM block, we generate N_t independent bit streams each of length $r_cK_d\log_2 M$ and encode them separately using the nonbinary LDPC codes [18]. Each coded bit stream of length $K_d\log_2 M$ is mapped into a symbol sequence of length K_d. A total of N_t OFDM blocks are formed with each block carrying K_d symbols from one symbol sequence. After proper pilot insertions, the N_t OFDM blocks are transmitted from N_t transmitters simultaneously. The next N_t blocks then follow.

Accounting for all the overheads due to the guard interval, channel coding, pilot, and null subcarriers, the overall spectral efficiency in terms of bits per second per Hertz is

$$\alpha = N_t \times \frac{T}{T+T_g} \times \frac{K_d}{K} \times r_c \times \log_2 M. \quad (1)$$

With a bandwidth B, the data rate in the unit of bits per second is

$$R = \alpha B. \quad (2)$$

In this communication, we will include experimental results with $N_t = 2, 3, 4$ transmitters. The total number of pilot subcarriers for all transmitters is K_p. Specifically, we will use a total of $K_p = K/4$ pilot subcarriers in our experimental results. To simplify channel estimation, each transmitter will be allocated a set of nonoverlapping pilot subcarriers to transmit nonzero pilot symbols, while zeros are transmitted on those subcarriers that belong to other transmitters. When $N_t = 2$ and $N_t = 4$, each transmitter μ will be assigned $K_p/N_t = K/(4N_t)$ subcarriers that are equally spaced. For example, one assignment on the pilot indexes to the μth transmitter, where $\mu = 1, \ldots, N_t$, could be

$$\{4N_t(i - 1) + 4(\mu - 1) + 2\}_{i=1}^{K/(4N_t)}.$$

When $N_t = 3$, the pilot positions are identical to the $N_t = 4$ case, simply turning off one transmitter from the four-transmitter system. The null subcarrier positions are identical for all transmitters. Half of null tones are placed at the edges of the frequency band, while the other half are randomly drawn from the available subcarrier positions. The positions of null subcarriers are fixed for all blocks after being picked during the design phase.
III. RECEIVER ALGORITHMS

The receiver algorithms should be well designed for the underwater acoustic communications. For stationary MIMO-OFDM tests, no resampling operation as described in [14] was needed. The key processing steps at the receiver are depicted in Fig. 1, and will be described next.

A. Doppler Estimation

The channel Doppler effect can be viewed as caused by carrier frequency offsets (CFO) among the transmitters and the receivers [14]. On each receiver, we assume a common CFO relative to all transmitters, as in [20, Ch. 11.5]. Hence, the CFO estimation algorithm presented in [14, eq. (14) and (15)] is directly applicable, where the energy on the null subcarriers is used as the objective function to search for the best CFO estimate.

After Doppler shift estimation and compensation, the average energy on the null subcarriers is used to compute the variance of the additive noise and residual intercarrier interference (ICI). This quantity is needed for the soft MMSE equalization in Section III-C.

B. Channel Estimation

After CFO compensation, pilot tones are used for channel estimation. Note that at each receive antenna \(\nu \), a total of \(N_t \) channels

\[
\{ h_{\nu\mu} := [h_{\nu\mu}(0), \ldots, h_{\nu\mu}(L - 1)]^T \}_{\mu=1}^{N_r}
\]

need to be estimated, where \(L \) is the channel length and \(h_{\nu\mu}(l) \) is the \(l \)th channel tap of the baseband equivalent model.

Since each transmitter is assigned with an exclusive set of pilot subcarriers, channel estimation is carried out for each transmitter–receiver pair separately. With equally spaced pilot tones, the least square (LS) channel estimator does not involve matrix inversion and can be implemented by a \(K_p/N_t \)-point inverse fast Fourier transform (FFT), as described in [14, eq. (18) and (19)]. Once the channel estimates \(\hat{h}_{\nu\mu} \), \(\nu = 1, \ldots, N_r \), \(\mu = 1, \ldots, N_t \), are available, the channel frequency response on each data subcarrier \(k \) is evaluated as

\[
\hat{H}_{\nu\mu}[k] = \sum_{l=0}^{L-1} h_{\nu\mu}(l) e^{-j2\pi kl/K}.
\]

Since \(K_p/N_t \) pilot tones are used for each channel estimator, our transceiver design can handle channels with \(L \leq K_p/N_t \) taps, which corresponds to a delay spread of \(K_p/N_t \) seconds. To handle longer channels, sparse channel estimation based on irregularly spaced pilot tones can be pursued (see, e.g., [21]), which is outside the scope of this communication.

C. Iterative MIMO Demodulation and Decoding

On each data subcarrier \(k \), the data from \(N_r \) receiving elements is grouped into a vector \(\mathbf{y}[k] = [y[k_1], \ldots, y[k_N_r]]^T \). The vector \(\mathbf{s}[k] := [s[k_1], \ldots, s[k_{N_r}]]^T \) contains the transmitted symbols on the \(k \)th subcarrier from \(N_t \) transmitters, and \(\mathbf{H}[k] \) denotes the \(N_r \times N_t \) channel matrix with \(\hat{H}_{\nu\mu}[k] \) as its \((\nu, \mu)\)th entry. Thus, we have

\[
\mathbf{y}[k] = \mathbf{H}[k] \mathbf{s}[k] + \mathbf{w}[k]
\]

where \(\mathbf{w}[k] \) contains the additive noise and residual ICI. We assume that the noises on different receivers are uncorrelated and Gaussian distributed, where the noise variance is estimated as the average energy on the null subcarriers. For convenience of algorithm presentation, the data are properly scaled so that the noise variances are identical for all receivers. In other words, \(\mathbf{w}[k] \) is assumed to be additive white Gaussian noise.

A maximum a posteriori (MAP) MIMO detector and a linear zero-forcing (ZF) detector were presented in [1] for the setting of two transmitters and QPSK modulation. In this communication, we combine successive interference cancellation (SIC), the soft MMSE equalization method developed in [17], and the nonbinary LDPC decoding in [18] to develop an iterative procedure on MIMO demodulation and decoding. The steps are as follows.

- **Step 1: Initialization.**
 First, we define \(N_t \) flags to indicate the decoding success on parallel data streams. Initially all flags are set to zero implying no success. Second, for each symbol in (4) to be demodulated, the mean is set to zero and the variance to the symbol energy \(E_s \), i.e., initially each symbol has equal probability of residing on all the constellation points.
 Third, to reduce the complexity of MMSE equalization, we project the \(N_r \times 1 \) received vector onto the \(N_t \)-dimensional signal space as \(\mathbf{r}_s \), might be much larger than \(N_t \). (This step is optional, but can reduce the matrix size for the subsequent iterative MIMO equalization without compromising the performance.) Specifically, let \(\mathbf{U}[k] \) contain \(N_t \) basis vectors of the range space of \(\mathbf{H}[k] \), which can be found by singular value decomposition.

\[
\tilde{z}[k] = \mathbf{U}^H[k] \mathbf{y}[k] = \tilde{\mathbf{A}}[k] \mathbf{s}[k] + \mathbf{\xi}[k]
\]

where \(\tilde{\mathbf{A}}[k] = \mathbf{U}^H[k] \mathbf{H}[k] \) is now a square matrix and \(\mathbf{\xi}[k] = \mathbf{U}^H[k] \mathbf{w}[k] \) has the same covariance as \(\mathbf{w}[k] \).

- **Step 2: Interference cancellation.**
 The data streams which are declared with decoding success do not need to be decoded again. Hence, their contributions can be subtracted from the received signals.
 Assume that \(N \) out of \(N_t \) data streams remain to be decoded. Partition \(\tilde{\mathbf{A}}[k] \) as \([\mathbf{A}_d[k], \mathbf{A}_u[k]] \), where the first part corresponds to the correctly decoded data streams and the second part corresponds to the remaining streams. Similar partition is performed for \(\mathbf{s}_d[k] \) and \(\mathbf{s}_u[k] \). Then, we obtain

\[
\mathbf{z}[k] = \tilde{\mathbf{z}}[k] - \mathbf{A}_d[k] \mathbf{s}_d[k] = \mathbf{A}_u[k] \mathbf{s}_u[k] + \mathbf{\xi}[k],
\]

- **Step 3: MMSE equalization with a priori information.**
 On each subcarrier \(k \), the MMSE equalization algorithm with a priori information from [17] is applied. The inputs to the MMSE equalizer are \(\mathbf{z}[k] \), \(\mathbf{s}_u[k] \), and the means and variances of all symbols comprising \(\mathbf{s}_u[k] \). The outputs of
the MMSE equalizer are the probabilities of each information symbol being equal to one valid constellation point. The details are provided in the Appendix.

• **Step 4: Nonbinary LDPC decoding.**

 With the outputs from the MMSE equalizer, nonbinary LDPC decoding [18] is run for each data stream to be decoded. The decoder yields the decoded information symbols and the updated probabilities, which are used to refine the mean and variance of each symbol as

\[
\bar{s} = \sum_{s \in S} \alpha_i P(s = \alpha_i)
\]

(7)

\[
v = \sum_{s \in S} |\alpha_i|^2 P(s = \alpha_i) - |\bar{s}|^2
\]

(8)

where \(S = \{\alpha_1, \alpha_2, \ldots, \alpha_M\} \) denotes the \(M \)-ary modulation alphabet.

During the decoding process, the decoder will declare success if the parity-check conditions are satisfied.

• **Step 5: Iteration among Steps 2–4.**

 The iteration will stop after one more round of decoding on the last data stream when the other streams have been successfully decoded, or after a prespecified number of runs.

IV. PERFORMANCE RESULTS: AUV07

The experimental data for this test were collected during the AUV Fest held in Panama City, FL, in June 2007. The water depth was 20 m. Two transmitters were deployed about 9 m below a surface buoy. The receiving array was about 9 m below a boat. The vertical array was 2 m in aperture with 16 hydrophones, out of which we used four. Here we report performance results for transmission distances of 500 and 1500 m. The key system parameters are listed in Table I.

A. Channel Profiles via Preamble Correlation

A linearly-frequency-modulated (LFM) signal is used as a preamble for synchronization. The correlation results are shown in Fig. 2 for the 500-m case, and in Fig. 3 for the 1500-m case.

It can be seen that the channel at 500 m has a larger delay spread than the channel at 1500 m, as expected.

B. CFO and Channel Estimation

The CFO estimates are shown in Fig. 4 for one data packet on one receiver. The CFO is within \([-2, 2]\) Hz range, which is caused by the transmitter and the receiver drifting with waves.

TABLE I

<table>
<thead>
<tr>
<th>SYSTEM PARAMETERS FOR AUV07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling rate</td>
</tr>
<tr>
<td>Center frequency</td>
</tr>
<tr>
<td>Signal bandwidth</td>
</tr>
<tr>
<td>OFDM block duration</td>
</tr>
<tr>
<td>Guard interval</td>
</tr>
<tr>
<td>Subcarrier spacing</td>
</tr>
<tr>
<td>Number of subcarriers</td>
</tr>
<tr>
<td>Number of data carriers</td>
</tr>
<tr>
<td>Number of pilot carriers</td>
</tr>
<tr>
<td>Number of null subcarriers</td>
</tr>
<tr>
<td>Spectral efficiency (two transmitters, QPSK modulation, rate 1/2 coding)</td>
</tr>
<tr>
<td>Data rate</td>
</tr>
</tbody>
</table>
The estimated channel for one OFDM block is shown in Fig. 5, which is in good agreement with the channel profiles shown in Figs. 2 and 3. It can be seen that the channel for the 500-m case has larger energy.

With $K_p/2 = 128$ subcarriers for each channel estimation, we can estimate 128 channel taps in discrete time, which amounts to a delay spread of 10.7 ms. Any arrivals after 10.7 ms will thus be treated as additive noise. Since the channel at 500 m has significant arrivals after 10.7 ms, the noise floor is much higher (around 8 dB) than that at 1500 m, as shown in Fig. 6. As a result, although the signal energy at 500 m is greater than that at 1500 m, the predemodulation signal-to-noise ratios (SNRs) become similar for both cases. The predemodulation SNR is computed as the ratio of the average signal energy on the pilot subcarriers to the average energy on the null subcarriers.

C. Bit Error Rate Results

We now report on the bit error rate (BER) results, where QPSK modulation and rate 1/2 nonbinary LDPC coding are utilized and the data rate is 12.18 kb/s. A total of 64 OFDM blocks have been transmitted, and hence, each parallel data stream contains $672 \times 64 = 43008$ information bits. Figs. 7 and 8 show the uncoded and coded BERs for data streams 1 and 2 in the 500-m case, respectively, where MMSE equalization is followed by LDPC decoding but with no iteration. Only two out of 64 blocks have decoding errors for data stream 2. For the 1500-m case, there is no error after LDPC decoding with the noniterative receiver.

Then, we apply the iterative MMSE demodulation and channel decoding on the data of the 500-m case. There is no decoding error after one round of iteration.

V. PERFORMANCE RESULTS: RACE08

The RACE08 was held in Narragansett Bay, RI, in March 2008. The water depths in the area range from 9 to about 14 m. The primary source of an ITC1007 transducer for acoustic transmissions was located approximately 4 m above the bottom. A vertical source array consisting of three AT-12ET transducers with a spacing of 60 cm between each transducer was deployed below the primary source. The top of the source array was approximately 1 m below the primary source. The system parameters are listed in Table II.
The four transducers are labeled from top to bottom as T0, T1, T2, and T3. For MIMO-OFDM transmissions, T0 and T1 were used for two transmitters, T0-T2 for three transmitters, and T0-T3 for four transmitters. T0 and the T1–T3 array were driven by different power supplies and hence they have different front-end circuits. In addition, driven by the same voltage inputs, the transducer T0 produces less transmission power than T1–T3, about 5 dB lower comparing the peaks. Finally, the spacing between T0 and T1 is greater than the spacings between T1, T2, and T3. Such a disparity between T0 and T1–T3 renders the data stream from T0 at a disadvantage relative to the other data streams; this will be reflected by the performance results.

For each MIMO-OFDM configuration, one data burst consisted of four packets with different modulation formats, as shown in Fig. 9. In particular, the packet of QPSK modulation contains 36 OFDM blocks, the packet of 8-QAM contains 24 OFDM blocks, the packet of 16QAM contains 18 OFDM blocks, while the packet of 64-QAM contains 12 OFDM blocks. (The 8-QAM constellation used in this communication is from [22, Fig. 4.3–4].) Rate 1/2 nonbinary LDPC coding as described in [18] is applied. Hence, each data burst contains the same number (672 × 36 = 24,192) of information bits for each parallel data stream at each setting.

Three receiving arrays were deployed during the experiment, mounted on fixed tripods with the bottom of the arrays 2 m above the seafloor. We here report on the results for the array at 400 m to the east from the source, which is a 24-element vertical array with 5 cm between elements. (Note that half of the wavelength at the carrier frequency is about 6.5 cm. The responses on the array elements might be slightly correlated.) We will use the data from the top 12 elements for processing, where the iterative MMSE demodulation and decoding structure is employed.

During the experiment, each signal was transmitted twice every 4 h, leading to 12 transmissions each day. We here report on the performance results based on data collected from 28 transmissions within the Julian dates 081–083 (March 21–23, 2008). Hence, each data stream at each setting has a total of 28 × 24192 = 677,376 information bits transmitted.

Fig. 10 depicts the channel estimates in one OFDM block with three transmitters, while Fig. 11 shows the channel estimates in one OFDM block with four transmitters (from a recorded block at the time 02:00 GMT on the Julian date 081). The channel delay spreads are about 5 ms. Note that the channel corresponding to the first data stream (transducer T0) has lower energy than others. This is a general trend for all the received blocks, and is attributed to the implementation differences discussed earlier.

A. Performance Results With Two Transmitters

Figs. 12–14 depict the coded block error rate (BLER) for each received data set across the Julian dates 081–083. The 8-QAM case is omitted as it has zero BLERs across all dates. Decoding errors occur only in one out of 28 data sets in the QPSK case, where two out of 36 OFDM blocks were badly distorted thus preventing correct decoding of stream 1. Table III summarizes the coded BERs and BLERs averaged over all data sets; i.e., a total of 677,376 information bits were used for each BER computed in the table.
B. Performance Results With Three Transmitters

Figs. 15–17 depict the coded BLER for each received data set across Julian dates 081–083. Table IV summarizes the BERs and the BLERs averaged over all data sets.

C. Performance Results With Four Transmitters

Figs. 18 and 19 depict the coded BLER for each received data set across Julian dates 081–083. Table V summarizes the BERs and the BLERs averaged over all data sets.
Usually no more than five iterations were needed between MIMO demodulation and decoding. From Tables III–V, we observe that the data stream 1 has worse performance than the other data streams. This is in part because the transducer on T0 has less power efficiency than others. We also conjecture that there might exist a possible Doppler shift mismatch between T0 and the array T1–T3 due to different spacings and front-end circuits. The BLER performances for all other data streams except stream 1 are acceptable and actually very good in many cases. A closer look at Figs. 15–19 reveals that no errors occurred in the majority of the data sets within the three-day span. The particular case of two transmitters and 8-QAM modulation having a spectral efficiency of 1.76 b/s/Hz does not have any decoding error across all the 28 data sets across three days.

In short, the spectral efficiency can be increased considerably by using high-order modulation in MIMO-OFDM transmissions, as demonstrated by the values corresponding to different configurations in Tables III–V. In particular, a spectral efficiency of 3.52 b/s/Hz is approached by two parallel 64-QAM data streams, or three parallel 16-QAM data streams, or four parallel 8-QAM data streams.¹

VI. PERFORMANCE RESULTS: VHF08

The VHF08 experiment was conducted in Buzzards Bay, MA, in April 2008. The water depth was 12 m. Two transmitters were about 6 m below a surface buoy. The receiving array was about 6 m below a boat. The array was 1 m in aperture with six hydrophones. The transmission distance was 450 m with a very-high-frequency (VHF) signal used. We scale the basic design of the \(K = 1024 \) case for the AUV07 experiment to two different bandwidths: \(B = 31.25 \) kHz and \(B = 62.5 \) kHz, following the design rules outlined in [23]. The parameters used are listed in Table VI.

A. Channel Estimation

The estimated channel for one OFDM block is shown in Fig. 20. The delay spread is about 4 ms.

B. BER Results

The BER results for different settings are listed in Table VII. Two transmitters and six receivers were used. The results are based on the iterative receiver with rate 1/2 nonbinary LDPC coding. There were 36, 24, and 18 OFDM blocks for the cases of QPSK, 8-QAM, and 16-QAM, respectively, when \(B = 31.25 \) kHz. There were 18, 12, and 9 OFDM blocks for the cases of QPSK, 8-QAM, and 16-QAM, respectively, when \(B = 62.5 \) kHz. Therefore, the BER values in Table VII are averaged over 1344 \times 36 = 48384 information bits for each parallel data stream at each setting. Error-free performance is achieved in this data set after no more than two rounds of iterative demodulation and decoding.

VII. CONCLUSION

In this communication, a MIMO-OFDM system with spatial multiplexing was presented. The receiver works on a
TABLE III
PERFORMANCE RESULTS WITH TWO TRANSMITTERS AND TWELVE RECEIVERS, RACE08

<table>
<thead>
<tr>
<th>Spectral efficiency</th>
<th>Data streams</th>
<th>Average BER</th>
<th>Average BLER</th>
</tr>
</thead>
<tbody>
<tr>
<td>2IMO, QPSK</td>
<td>1.17 b/s/Hz</td>
<td>Stream 1: 4×10^{-4}</td>
<td>Stream 2: 2×10^{-3}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stream 1: 0</td>
<td>Stream 2: 0</td>
</tr>
<tr>
<td>2IMO, 8-QAM</td>
<td>1.76 b/s/Hz</td>
<td>Stream 1: 0</td>
<td>Stream 2: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stream 1: 6×10^{-3}</td>
<td>Stream 2: 3×10^{-2}</td>
</tr>
<tr>
<td>2IMO, 16-QAM</td>
<td>2.35 b/s/Hz</td>
<td>Stream 1: 3×10^{-3}</td>
<td>Stream 2: 1×10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stream 1: 7×10^{-2}</td>
<td>Stream 2: 4×10^{-1}</td>
</tr>
<tr>
<td>2IMO, 64-QAM</td>
<td>3.52 b/s/Hz</td>
<td>Stream 1: 1×10^{-2}</td>
<td>Stream 2: 5×10^{-2}</td>
</tr>
</tbody>
</table>

TABLE IV
PERFORMANCE RESULTS WITH THREE TRANSMITTERS AND TWELVE RECEIVERS, RACE08

<table>
<thead>
<tr>
<th>Spectral efficiency</th>
<th>Data streams</th>
<th>Average BER</th>
<th>Average BLER</th>
</tr>
</thead>
<tbody>
<tr>
<td>3IMO, QPSK</td>
<td>1.76 b/s/Hz</td>
<td>Stream 1: 2×10^{-2}</td>
<td>Stream 2: 1×10^{-1}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stream 1: 5×10^{-4}</td>
<td>Stream 2: 2×10^{-3}</td>
</tr>
<tr>
<td>3IMO, 8-QAM</td>
<td>2.64 b/s/Hz</td>
<td>Stream 1: 1×10^{-2}</td>
<td>Stream 2: 6×10^{-3}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stream 1: 1×10^{-3}</td>
<td>Stream 2: 3×10^{-3}</td>
</tr>
<tr>
<td>3IMO, 16-QAM</td>
<td>3.52 b/s/Hz</td>
<td>Stream 1: 4×10^{-2}</td>
<td>Stream 2: 1×10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stream 1: 2×10^{-2}</td>
<td>Stream 2: 8×10^{-2}</td>
</tr>
</tbody>
</table>

TABLE V
PERFORMANCE RESULTS WITH FOUR TRANSMITTERS AND TWELVE RECEIVERS, RACE08

<table>
<thead>
<tr>
<th>Spectral efficiency</th>
<th>Data streams</th>
<th>Average BER</th>
<th>Average BLER</th>
</tr>
</thead>
<tbody>
<tr>
<td>4IMO, QPSK</td>
<td>2.35 b/s/Hz</td>
<td>Stream 1: 8×10^{-2}</td>
<td>Stream 2: 4×10^{-1}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stream 1: 2×10^{-3}</td>
<td>Stream 2: 3×10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stream 1: 3×10^{-3}</td>
<td>Stream 2: 3×10^{-2}</td>
</tr>
<tr>
<td>4IMO, 8-QAM</td>
<td>3.52 b/s/Hz</td>
<td>Stream 1: 4×10^{-2}</td>
<td>Stream 2: 1×10^{-1}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stream 1: 7×10^{-3}</td>
<td>Stream 2: 8×10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stream 1: 1×10^{-2}</td>
<td>Stream 2: 8×10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stream 1: 8×10^{-3}</td>
<td>Stream 2: 8×10^{-2}</td>
</tr>
</tbody>
</table>

TABLE VI
SYSTEM PARAMETERS FOR THE VHF08 EXPERIMENT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling rate f_s</td>
<td>500 kHz</td>
</tr>
<tr>
<td>Center frequency f_c</td>
<td>110 kHz</td>
</tr>
<tr>
<td>OFDM block duration T</td>
<td>65.5 ms</td>
</tr>
<tr>
<td>Guard time T_g</td>
<td>20 ms</td>
</tr>
<tr>
<td>Subcarrier spacing Δf</td>
<td>15.2588 Hz</td>
</tr>
<tr>
<td>Signal bandwidth B</td>
<td>31 kHz</td>
</tr>
<tr>
<td>Number of subcarriers K</td>
<td>2048</td>
</tr>
<tr>
<td>Number of data carriers K_d</td>
<td>1334</td>
</tr>
<tr>
<td>Number of pilot carriers K_p</td>
<td>512</td>
</tr>
<tr>
<td>Number of null subcarriers K_n</td>
<td>198</td>
</tr>
</tbody>
</table>

APPENDIX

MMSE EQUALIZATION WITH A PRIORI INFORMATION [17]

For convenience, we list here the MMSE equalization algorithm with a priori information from [17].

We omit the index k and the subscript in (6) to work on a generic model $z = AS + \xi$, where ξ has a covariance matrix $\sigma_\xi^2 I_N$. The a priori information of $s_n, n = 1, 2, \ldots, N$, is given in the forms of the mean $\bar{s}_n \triangleq E(s_n)$ and the variance $\upsilon_n \triangleq \text{Cov}(s_n, s_n)$. Let a_n denote the nth column of matrix A, and use \bar{s}_n and υ_n to define

$$s \triangleq E(s) = [\bar{s}_1, \bar{s}_2, \ldots, \bar{s}_N]^T$$

$$z \triangleq E(z) = A \bar{s}$$

$$V \triangleq \text{Cov}(z, z) = \text{diag}[\upsilon_1, \upsilon_2, \ldots, \upsilon_N]$$

$$\Sigma \triangleq \text{Cov}(z, z) = \sigma_\xi^2 I_N + A \Sigma A^T$$

$$f_n \triangleq \Sigma^{-1} a_n$$

$$K_n \triangleq (1 + (1 - \upsilon_n) f_n^H a_n)^{-1}.$$

The estimate \hat{s}_n is then computed as

$$\hat{s}_n = K_n f_n^H (z - \bar{s}_n a_n).$$
In this computation, \hat{s}_n is independent from the \textit{a priori} information about s_n, but dependent on the \textit{a priori} information about all $s_{n'}$ where $n' \neq n$ \cite{17}.

Assuming that \hat{s}_n is Gaussian distributed with mean

$$\mu_n = K_{n} s_n r_n^H a_n$$

and variance

$$\sigma_n^2 = K_{n}^2 (r_n^H a_n - v_n r_n^H a_n r_n^H r_n)$$

the probabilities $p(\hat{s}_n | s_n = \alpha_{n}, i = 1, 2, \ldots, M$, can be computed from Gaussian probability density function \cite{17}. These probabilities are passed to the nonbinary LDPC decoder.

ACKNOWLEDGMENT

The authors would like to thank Dr. J. Preisig and his team for conducting the RACE08 experiment.

REFERENCES

\begin{table}
\centering
\caption{Performance results for the VHF08 experiment, Two Transmitters, Rate 1/2 Coding}
\begin{tabular}{|c|c|c|c|c|}
\hline
B & Spectral efficiency & Data rate & Data Streams & Uncoded BER & Coded BER \\
\hline
31.25kHz, QPSK & 1.0055 b/s/Hz & 31.4214 kbps & Stream 1 & 0.0025 & 0 \\
\hline
31.25kHz, 8-QAM & 1.5082 b/s/Hz & 47.1320 kbps & Stream 1 & 0.0178 & 0 \\
\hline
31.25kHz, 16-QAM & 2.0010 b/s/Hz & 62.8438 kbps & Stream 1 & 0.0049 & 0 \\
\hline
62.5kHz, QPSK & 1.0055 b/s/Hz & 62.8427 kbps & Stream 1 & 0.0512 & 0 \\
\hline
62.5kHz, 8-QAM & 1.5082 b/s/Hz & 94.2640 kbps & Stream 1 & 0.1102 & 0 \\
\hline
62.5kHz, 16-QAM & 2.0110 b/s/Hz & 125.6875 kbps & Stream 1 & 0.1938 & 0 \\
\hline
\end{tabular}
\end{table}
Baosheng Li (S’05) received the B.S. and M.S. degrees in the electronic and communications engineering from the Harbin Institute of Technology, Harbin, China, in 2002 and 2004, respectively, and Ph.D. degree in electrical engineering from the University of Connecticut, Storrs, in 2009. Currently, he is a Postdoctoral Research Fellow at Northeastern University, Boston, MA. His research interests lie in the areas of communications and signal processing, currently focusing on multi-transceiver and multicarrier modulation algorithms for underwater acoustic communications.

Jie Huang received the B.S. and Ph.D. degrees in electrical engineering and information science from the University of Science and Technology of China (USTC), Hefei, China, in 2001 and 2006, respectively. He was a Postdoctoral Researcher with the Department of Electrical and Computer Engineering, University of Connecticut (UConn), Storrs, from July 2007 to June 2009, and is now a Research Assistant Professor at UConn. His general research interests lie in the areas of communications and signal processing, specifically error control coding theory and coded modulation. His recent focus is on signal processing, channel coding and network coding for underwater acoustic communications and networks.

Shengli Zhou (M’03) received the B.S. and M.Sc. degrees in electrical engineering and information science from the University of Science and Technology of China (USTC), Hefei, China, in 1995 and 1998, respectively, and the Ph.D. degree in electrical engineering from the University of Minnesota (UMN), Minneapolis, in 2002. He has been an Assistant Professor with the Department of Electrical and Computer Engineering, University of Connecticut (UConn), Storrs, from 2003 to 2009, and now is an Associate Professor. He holds a United Technologies Corporation (UTC) Professorship in Engineering Innovation, 2008–2011. His general research interests lie in the areas of wireless communications and signal processing. His recent focus has been on underwater acoustic communications and networking.

Dr. Zhou has served as an Associate Editor for the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS from February 2005 to January 2007, and is now an Associate Editor for the IEEE TRANSACTIONS ON SIGNAL PROCESSING. He received the 2007 Office of Naval Research (ONR) Young Investigator award and the 2007 Presidential Early Career Award for Scientists and Engineers (PECASE).

Keenan Ball received the B.S. degree in electromechanical engineering from Wentworth Institute of Technology, Boston, MA, in 2000 and the M.S. degree in electrical engineering from the University of Massachusetts, Dartmouth, in 2002. Currently, he is a Research Engineer at the Woods Hole Oceanographic Institution, Woods Hole, MA, where he has worked on projects related to underwater acoustics. The programs that he works on focus on underwater acoustic communication and navigation for unmanned underwater vehicles (UUVs), moored systems, and the associated hardware designs for these applications.

Milica Stojanovic (S’90–M’93–SM’08) graduated from the University of Belgrade, Belgrade, Serbia, in 1988, and received the M.S. and Ph.D. degrees in electrical engineering from Northeastern University, Boston, MA, in 1991 and 1993, respectively. After a number of years with the Massachusetts Institute of Technology (MIT), Cambridge, where she was a Principal Scientist, in 2008, she joined the faculty of Electrical and Computer Engineering Department, Northeastern University. She is also a Guest Investigator at the Woods Hole Oceanographic Institution, Woods Hole, MA, and a Visiting Scientist at MIT. Her research interests include digital communications theory, statistical signal processing and wireless networks, and their applications to mobile radio and underwater acoustic communication systems.

Dr. Stojanovic is an Associate Editor of the IEEE JOURNAL OF OCEANIC ENGINEERING and the IEEE TRANSACTIONS ON SIGNAL PROCESSING.

Lee Freitag (M’88) received the B.S. and M.S. degrees in electrical engineering from the University of Alaska, Fairbanks, in 1986 and 1987, respectively. Currently, he is a Senior Engineer at the Woods Hole Oceanographic Institution, Woods Hole, MA, where he has worked on projects related to underwater acoustics for 15 years. His research programs focus on underwater acoustic communication and navigation with a strong focus on unmanned underwater vehicles (UUVs), sensors, and submarine systems.

Mr. Freitag is a member of the Marine Technology Society (MTS).

Peter Willett (F’03) received the B.A.Sc. degree in engineering science from the University of Toronto, Toronto, ON, Canada, in 1982 and the Ph.D. degree in electrical engineering from Princeton University, Princeton, NJ, in 1986. Since 1986, he has been a faculty member at the University of Connecticut, Storrs, and since 1998, has been a Professor. His primary areas of research have been statistical signal processing, detection, machine learning, data fusion, and tracking. He has interests in and has published in the areas of change/abnormality detection, optical pattern recognition, communications, and industrial/security condition monitoring.

Dr. Willett is the Editor-in-Chief of the IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, and until recently was an Associate Editor for three active journals: the IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS (for Data Fusion and Target Tracking), the IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, and the IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS. He is also an Associate Editor for the IEEE AEROSPACE AND ELECTRONICS SYSTEMS MAGAZINE, an Editor of the IEEE AEROSPACE AND ELECTRONICS SYSTEMS MAGAZINE periodic Tutorial issues, an Associate Editor for ISIF electronic Journal of Advances in Information Fusion, and is a member of the editorial board of the IEEE SIGNAL PROCESSING MAGAZINE. He has been a member of the IEEE AESS Board of Governors since 2003. He was General Co-Chair (with Stefano Coruluppi) for the 2006 ISIF/IEEE Fusion Conference, Florence, Italy, Program Co-Chair (with Eugene Santos) for the 2003 IEEE Conference on Systems, Man, and Cybernetics, Washington, DC, and Program Co-Chair (with Pramod Varshney) for the 1999 Fusion Conference, Sunnyvale, CA.