PROBLEM 11.1

KNOWN: 100 lb of CO₂ is at 212°F in a 19.8 ft³ cylinder.

FIND: Determine the pressure using (a) the van der Waals equation, (b) the compressibility chart, (c) the ideal gas model.

ANALYSIS: Using the given data, \(v = 0.193 \text{ ft}³/\text{lb}. \)

(a) The van der Waals equation is given by Eq. 11.2,

\[
p = \frac{RT}{V-b} - \frac{a}{V^2}
\]

From Table A-24E,

\[
a = 926 \text{ atm} \left(\frac{\text{ft}³}{\text{mol}} \right)^2 \quad b = 0.686 \frac{\text{ft}³}{\text{mol}}
\]

\[
p = \frac{(1545 \text{ ft}³/\text{mol})(678 \text{ atm}) \left(\frac{\text{ft}³}{\text{mol}} \right)^2}{(0.193 \text{ ft}³/\text{mol})(4401 \text{ lb}) - 0.686 \text{ ft}³/\text{mol}} = 50 \text{ atm}
\]

(b) Compressibility Chart

From Table A-1E, \(T_e = 548 \text{ °F}, \ P_e = 72.9 \text{ atm}. \) Thus, \(T = \frac{672}{548} = 1.226 \) and

\[
V_e = \frac{72.9}{RT_e} = \frac{(0.193)(4401)}{(1545)(72.9)} \left(\frac{\text{ft}³}{\text{mol}} \right)^2 = 1.548
\]

Then Fig. 3-1 gives \(P_e \approx 49.94 \text{ atm}. \)

(c) With the ideal gas equation of state,

\[
p = \frac{RT}{V} = \frac{(1545)(212)(\text{mil})}{(0.193)(4401)} = 57.76 \text{ atm}
\]

Discussion: Methods (a), (b) suggest that the pressure level would be safe, but at the high end of the allowed range. The ideal gas model suggests that the pressure would not be satisfactory.

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.