1 OAEP and IND-CPA

Recall the OAEP we learned in last lesson, plaintext:

\[m \rightarrow (G(r) \oplus (m \parallel 0^{K_1})) \parallel (H(s) \oplus r) \]

Here, \(m \) is \(K - K_0 - K_1 \) bits; \(s \) is \(G(r) \oplus (m \parallel 0^{K_1}) \), \(K - K_0 \) bits; \(t \) is \(H(s) \oplus r \), \(K_0 \) bits.

The central idea for using OAEP, instead of encryption \(m \), \(f(s \parallel t) \) is the encryption of \(m \).

Avoid supplying more information about plaintext to adversary by more random distribution. For example, \(f \) is RSA, \(f(x) = x^e \mod n \). If \(c \leftarrow f(x) \), then it holds that \(2^e c \mod n = f(2x) \). But \(2x \) is \(OAEP^{-1} \), that is,

\[s \parallel t \rightarrow integer \]
\[(2V \mod n) \rightarrow s_1 \parallel t_1 \]

Plaintext Awareness: if an adversary produces a ciphertext \(\phi \) that is “decryptable” then he must know the plaintext.

We want to show now that \(f - OAEP \) is \(IND - CPA \) secure under the assumption that \(f \) is a \(OWTP \).

The IND-CPA Game is shown in the figure 1. The modified game is shown in figure 2.

* shows if adversary makes \(h \) query to \(H \) either use \(H(h) \) if \(< h, H(h) > \in T_H \) or choose \(H(h) \) at random.

For each \(< g, G(g) > \in T_G, w_{h,g} = h \parallel (H(h) \oplus g) \).

If \(f(w_{h,g}) = y \), then we found \(f^{-1}(y) \)!

Similarly for query \(g \) to \(G \).

Proved.

The IND-CCA, IND-CCA2 Game are shown in figure 3.

2 Cramer Shoup Public-key Cryptosystem

This scheme is proposed in 1998.
GEN:

Z_p^*, q. Let G be a subgroup of Z_p of order q.
$x_1, x_2, y_1, y_2, z \leftarrow_R Z_q.$
$g_1, g_2 \leftarrow_R G,$
c $= g_1^{x_1} g_2^{x_2}, d = g_1^{y_1} g_2^{y_2}, h = g_1^Z,$ and a hash function $H : G^3 \rightarrow Z_q.$

public key: (g_1, g_2, c, d, h, H), secret key: (x_1, x_2, y_1, y_2, z).

Encryption:

Encryption of $m \in G$, choose $r \leftarrow_R Z_q.$

$u_1 \leftarrow g_1^r.$
$u_2 \leftarrow g_2^r.$
Figure 3: The IND-CCA, IND-CCA2 Game.

e \leftarrow h^r m.
\alpha \leftarrow H(u_1, u_2, e).
v \leftarrow c^d r^\alpha.

Ciphertext: \((u_1, u_2, e, v)\).
Observe: \((u_1, e)\) is ElGamal Cipher with pk: \((g, h)\), sk: \((z)\).

Decryption:
Given \((V_1, V_2, E, V)\),
Compute \(\alpha = H(V_1, V_2, E)\).
Check if \(V_1^{x_1+y_1\alpha} V_2^{x_2+y_2\alpha} = V\).
If yes, return \(E/h^2\), else fail.

Observe: \(V_1 = g_1^r, V_2 = g_2^r, E = h^r m\), so we have,
\(V_1^{x_1+y_1\alpha} V_2^{x_2+y_2\alpha} = g_1^{r(x_1+y_1\alpha)} g_2^{r(x_2+y_2\alpha)} = (g_1^{y_1} g_2^{y_2})^r (g_1^{y_1} g_2^{y_2})^r = c^d r^\alpha = V\)