Example Test Two

NAME: _____________________________________

This is a “closed book/closed notes/closed calculators/phones/laptops/etc.” test.
Make sure to show your work and explain your answers.
No credit will be given for lucky guesses.

0. [1 pt] Do you understand the instructions above?

Yes
No

<table>
<thead>
<tr>
<th>Question</th>
<th>Max</th>
<th>Sub-total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>TOTAL:</td>
<td>101</td>
<td></td>
</tr>
</tbody>
</table>

Earned bonus points:
GRAND TOTAL:

1 Language Classes [25 pts]

(a) [4 pts] Define Context Free Languages (CFL) and use your definition to specify one such language.

(b) [10 pts] State the Pumping Lemma for CFLs. Prove that the following language is not a CFL:

\[A = \{ w \mid w \in \{a,b,c\}^* \text{ and contains equal number of } a \text{'s, } b \text{'s, and } c \text{'s } \} \.

(c) [4 pts] Define Turing-Decidable Languages.

(d) [4 pts] Define Turing-Recognizable Languages.

(e) [3 pts] Define the Halting Problem as a language.
2 Languages & Automata [20 pts]

Complete and label the Venn diagram representing all of the following sets (add ovals as necessary; assume $P \neq NP$):

1. CFL: the set of all context-free languages
2. $NPDA$: the set of all languages recognized by Non-deterministic PDAs
3. P: the set of all languages decidable in polynomial time by Deterministic Turing Machines
4. NP: the set of all languages decidable in polynomial time by Non-deterministic Turing Machines
5. DL: The set of all Decidable Languages
6. DTM: The set of all languages that have Deterministic Turing Machine deciders
7. TR: The set of all Turing Recognizable languages
8. $NTM2$: The set of all languages that have Non-Deterministic 2-tape Turing Machine deciders
9. E: The set of all languages that have Enumerators
3 Turing Machines and Time Complexity [25 pts]

Let \(\langle V, E \rangle \) be some suitable representation of a graph, where \(V \) are the vertices and \(E \) are the edges. Let \(\text{REACH} \) be the language \(\text{REACH} = \{ \langle \langle V, E \rangle, s, t \rangle \mid \langle V, E \rangle \text{ is a graph where there is a path from vertex } s \text{ to vertex } t \} \).

Consider the following high-level description of a non-deterministic Turing Machine \(N \).

\[
N(\langle \langle V, E \rangle, s, t \rangle):
\]
1. Check the input graph for well-formedness and that \(s, t \in V \)
2. Non-deterministically choose an ordered set of vertices \(\{v_1, \ldots, v_k\} \) from \(V \)
3. If \(v_1 \neq s \) then \(\downarrow - \)
4. For \(j = 1 \) to \(k - 1 \) do
 \[
 \text{if } (v_j, v_{j+1}) \notin E \text{ then } \downarrow -
 \]
5. If \(v_k = t \) then \(\downarrow + \) else \(\downarrow - \)

(a) [5 pts] Is this Turing Machine a \textit{decider} for \(\text{REACH} \)? Explain your answer.

(b) [5 pts] Show that the time complexity (running time) of this Turing Machine is polynomial.

(c) [5 pts] Does it follow from (a), (b) that \(\text{REACH} \) is in \(P \)? \(NP \)? Both? Explain.

(d) [10 pts] Prove (without relying on your answers above) that \(\text{REACH} \) is in \(P \).
4 Turing Decidability and Recognizability [30 pts]

(a) [6 pts] Give two examples of Turing-decidable problems.
1.
2.

(b) [6 pts] Give two examples of Turing-recognizable, but undecidable problems
1.
2.

(c) [6 pts] Consider the language \(A = \{ \langle M, w, q \rangle \mid \text{Turing Machine } M \text{ on input } w \text{ enters state } q \} \)
Is \(A \) decidable []? Recognizable []? Both []? Explain.

(d) [12 pts] If \(A \) above is decidable, describe a high-level algorithm for a decider.
If undecidable, prove that it is not decidable.