The Fourth Annual DHS University Network Summit
Panel 22 - Transportation System Resiliency
Enabling Technologies for Resilient Transportation

Professor Michael L. Accorsi
University of Connecticut

This material is based upon work supported by the U.S. Department of Homeland Security under Award Number 2008-ST-061-TS0002-01. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security.
The Transportation Security Challenge

- Large interconnected networks with many infrastructure components
- Potential cascading effects due to loss of a single component
- Requires integrated risk assessment & management at both the network & component levels
Enabling Technologies

1. Advanced Materials
 • Material synthesis
 • Material characterization
 • Material level modeling

2. Network & Structural Modeling & Simulation
 • Verification & validation
 • All-hazards modeling
 • Predictive capabilities

3. Network & Structural Monitoring
 • Sensor technology
 • Sensor network design
 • Damage detection

What are existing capabilities & gaps? What are short and long term goals?
Enabling Technologies & Security = Prevent + Protect + Respond + Recover

Protect
• Transportation network simulation to design networks for maximum resiliency
• Verified simulation capability for all-hazards design of infrastructure components
• Hardening of strategic infrastructure components via advanced materials
• Optimized sensor networks at both the network & component levels

Respond
• Network sensing provides real-time information for network level decision making
• Structural monitoring & sensing provides real-time assessment of damage
• Reliable real-time information for evacuation and emergency response
• Integrate network & structural simulations with real-time sensing

Recover
• Post incident assessment of network adaptability & structural damage
• Integrate network sensing & simulation to evaluate & verify recovery strategies
• Integrate structural sensing & simulations to verify damage assessment
• Perform simulation to evaluate and implement structural repairs
Goal: Maximize transportation network resiliency through real-time monitoring and intelligent response.

Objectives: Model vulnerability, optimize sensor placement, develop data routing strategies.

Approach
1. Vulnerability-Driven Sensor Placement
 - Vulnerability Modeling - Assess the risk level of each link
 - Sensor Placement - Utilize this information in optimizing sensor locations
2. Data Routing
 - Route collected data to appropriate stations

Game Theory Based Vulnerability Analysis
Strengthening and Modeling of Earth Embankments Under High Loads
M. Chrysochoou, D. Basu and A. Bagtzoglou

Motivation: Soil-structure interaction important in many applications
Goal: Soil strengthening & soil modeling for extreme loads
Approach:
• Chemical strengthening with fly ash (under utilized material) + quantitative mineralogy = predictive design & enhanced properties (+500%)
• Soil constitutive model + material characterization = soil-structure interaction modeling for high rate loads
Mechanical Characterization of UHPC for Resilient Transportation Infrastructure
A. Zofka, M. Accorsi and J. Mahoney

Motivation: Revolutionary advances in concrete technology in last decade
Goal: Develop modeling & simulation capabilities for thermo-mechanical behavior of ultra-high performance concrete (UHPC) structures
Approach: Thermo-mechanical testing + constitutive modeling
Advanced Composite Materials for Blast and Fire Resistance
R. Hebert, B. Huey, G. Rossetti, J.H. Kim - University of Connecticut
Richard Riman - Rutgers University
Arun Shukla - University of Rhode Island

Motivation: Existing solutions for blast loading are not suitable for elevated temperatures; conversely, existing solution for fire resistance are not blast resistant.

Goal: Development of new composite sandwich materials with combined blast & fire resistance.

Approach: Metallic, oxide & ceramic materials & sandwich architectures, material synthesis and characterization, microstructural analysis, high temperature & blast loading, material level modeling
Integrated Sensing and Control System Development for Bridge Structures
R. Christenson and J. Tang

Goal: Develop and demonstrate an integrated framework of sensing and control of bridge structures

Approach: Integrated sensing & control methodology, scaled bridge test bed, novel impedance sensor system, magneto-rheological fluid dampers (control), modal & impact testing, numerical modeling & simulation

Bridge Test Bed
- Impedance Sensors
- MRF Dampers
- Permanent Magnet Shaker
- Drop Weight Testing

Impedance Sensors

MRF Dampers
Conclusions:
• Strong national need for next-generation resilient infrastructure
• Utilize existing and emerging technologies
• Strong need for basic research and development
• Area that is ripe for innovation!

Thank you