1. Number and Title every Figure and Table. Cite the numbers in the text. Label columns and axes. Give units for things tabulated or plotted. Graphs are figures, not some separate type of thing.

2. Use graphs to help make comparisons between numbers easy (visual). Changing scales makes visual comparisons harder.

3. Plot experimental data with dots (or other symbols), one for each point. Show theoretical calculations on the same plot with lines and no points.

4. Show equations on separate lines; number each equation. Use an equation editor with superscripts and subscripts and radical symbols rather than using computerese. (Show x^2, not x^y). Define every symbol used in equations. Give units where appropriate.

5. Take care in using symbols in equations and in text. V, v, and v are not the same. Nor is V_t the same thing as V_{tank}. Be consistent.

6. Abstracts should be concise and specific. They are not the place for background material. Instead of saying, “several pipe sizes were tested,” say, “We used tubes with diameters ranging from 0.148 to 0.302 in.”

7. Avoid using possessives of inanimate objects in technical writing. Say “the temperature of the water” not, “the water’s temperature.”

8. Decimal numbers smaller than one are shown with leading zeroes. (0.302)

9. Avoid general citations, especially to major works. Most of the papers cited Perry’s and Geankopolis in references, but without referring to them in the text and without giving any hints as to what in those massive tomes was used. It is fine to use handbooks and textbooks as sources, but you have to cite them where you use them (in the text of your report).

10. Proofread! There is no excuse for having misspellings any word processor will highlight. Running spellchecker is not enough, however. It takes a human eye to notice that the term you are discussing is the denominator, not the dominator, and you may have to overrule a spell checker that does not like using cP for centipoise.

11. If using spreadsheets to present data, take care that cell labels are not cut off. Give units for values. Make clear what numbers are your experimental numbers and what are from other sources. Cite sources for physical property data and other input parameters.

12. Use past tense when describing your finished work.